GROWTH AND BIOCHEMICAL COMPOSITION DURING LARVAR AND EARLY JUVENILE DEVELOPMENT OF THE SPIDER CRAB, MAJA BRACHYDACTYLA (DECAPODA: MAJIDAE).

The large edible spider crab Maja brachydactyla Balss, 1922, an overexploited coastal fishery resource in Galicia (NW Spain), is considered as a potential aquaculture candidate. Patterns of its larval growth were studied under controlled laboratory conditions (constant 18±1 °C; 36‰ salinity; photoperiod ca. 12:12 h; lipid-enriched Artemia metanauplii provided as food). From hatching through complete larval development and metamorphosis to the first juvenile crab instar, changes in carapace size, dry weight (DW), ash content, elemental composition (carbon, hydrogen, nitrogen; CHN), and proximate biochemical composition (total proteins, lipids, carbohydrates; Pr, L, Ch) were measured in successive stages (zoea I, II, megalopa, crab I). Body size may be described as a linear function of the number of molting cycles, whereas the amounts of DW, CHN, Pr, L, and Ch per individual increased exponentially (3 to 9 fold). The highest growth rates were observed in L, C and H, the lowest in DW, Pr and N. As a consequence of these patterns, the C:N mass ratio as well as the fractions of L, C and H (in % of DW) increased significantly, while those of Pr and N decreased from 26% to 16% of DW. Throughout development, however, Pr remained the principal biochemical component of total DW. Positive correlations between biochemical and CHN data allow for estimates of Pr from N and of L from C values per individual. The patterns of larval growth observed in M. brachydactyla are, in general, similar to those previously described for other brachyuran crabs with a planktotrophic mode of larval development
Autor: 
ANDRÉS, M., ESTÉVEZ, A., ANGER, K. & ROTLLANT, G.
Referencia: 
J. Exp. Biol. Ecol.,
Volumen: 
357
Pagina Inicial: 
35
Pagina final: 
40